پیوند درختان میوه

پیوند درختان میوه

پیوند درختان میوه

پیوند درخت عبارت است از اتصال و اتحاد دو اندام و بافت گیاهی به‌طوری‌که دو قسمت در محل اتصالی‌ترمیم شده و به‌صورت یک واحد مستقل درمی‌آیند. قسمتی که پیوند در روی آن انجام می‌گیرد و بخش ریشه گیاه جدید را تشکیل می‌دهد، پایه خوانده می‌شود و قسمتی که روی پایه پیوند می‌زنیم و نهایتاً اندام هوایی و شاخسار را تشکیل می‌دهد پیوندک نامیده می‌شود .

مزایای پیوند درختان میوه

  • با استفاده از پیوند، می‌توان گیاهی را که دارای ریشه ضعیفی است روی پایه‌ای که دارای ریشه قوی است قرارداد .
  • با پیوند زدن می‌توان درختانی همانند بادام، سیب و گرد را که افزایش آن‌ها با سایر روش‌ها (مانند خوابانیدن) مشکل است؛ به‌آسانی و به سرعت تکثیر نمود .
  • با پیوند می‌توان ارقام جدید را با استفاده از پایه‌های قدیمی جایگزین ارقام قدیمی کرد. این کار را سرشاخه کاری می‌گویند .
  • با استفاده از پیوند می‌توان نسبت به تعویض رقم باغ قدیمی اقدام کرد .
  • از دیگر مزایای پیوند جلو انداختن گل‌دهی و زود باردهی نسبت به سایر روش‌ها می‌باشد .

عوامل موثر در پیوند موفق

  • زمان انجام پیوند
  • روش انجام پیوند
  • سازگاری بین پایه و پیوندک
  • شرایط محیطی

زمان پیوند

در پیوندهای شاخه بهترین زمان برای انجام پیوند اواخر زمستان – اوایل بهار قبل از بیدارشدن درخت از خواب زمستانی است. اما برای پیوند جوانه برحسب منطقه از بهار تا تابستان یعنی زمانی که پوست پایه به‌راحتی جدا می‌شود انجام می‌گردد .

روش‌های انجام پیوند

  • پیوند اسکنه‌ای: پیوندی است که در اواخر اسفندماه تا اوایل فروردین‌ماه در درختان میوه مورداستفاده قرار می‌گیرد .
  • پیوند نیمانیم یا پیوند انگلیسی: این نوع پیوند زمانی به کار می‌رود که پایه و پیوندک دارای قطر مساوی باشد و به دو صورت نیمانیم ساده و یا نیمانیم زبانه‌دار مورداستفاده قرار می‌گیرد .
  • پیوند جوانه‌ای: این نوع پیوند همیشه در نهال‌های جوانی که سن آن‌ها بین ۱ تا ۲ سال است انجام می‌شود . این نوع پیوند را  در سه موقع از سال می‌توان انجام داد:
    • الف) فصل بهار (اواخر بهار تا اوایل تابستان)
    • ب) در اواسط تا اواخر تابستان نیز می‌توان این پیوند را انجام داد
    • ج) در بهار قبل از بیدارشدن گیاه نیز می‌توان این پیوند را انجام داد ودراین زمان هم‌پایه و هم پیوندک به‌خوبی باهم پوست می‌دهند .
  • پیوند سپری شکمی: این نوع از پیوند به دلیل سرعت عمل، سهولت جوش خوردن بافت‌ها و ایجاد حداقل زخم در پایه بیشترین استفاده را دارد .
  • پیوند وصله‌ای: این روش بیشتر برای درخت گردو به کار می‌رود و زمانی انجام می‌شود که درخت به‌راحتی پوست بدهد .

علائم ناسازگاری (نگرفتن) پیوند

  • اختلاف در رشد قطری پایه و پیوندک
  • تغییر رنگ زودهنگام برگ‌ها در پاییز به‌احتمال زیاد دلیل ناسازگاری و عدم گرفتن پیوند است .
  • ریزش غیرطبیعی برگ (ریزش زودهنگام برگ)
  • رشد سریع جوانه‌های گل و شکوفه کردن نابهنگام در پاییز می‌تواند از علائم ناسازگاری در پیوند باشد .
  • جداشدن پیوندک از پایه در مراحل اولیه رشد نهال
  • زرد شدن برگ‌های نهال در خزانه از دیگر علائم ناسازگاری است
  • بافت‌های پیوندی در حکم یک فیلتر برای عبور مواد غذایی و مواد جذب‌شده از ریشه (املاح معدنی) است اما بعضی مواقع به دلیل ناسازگاری و نگرفتن پیوند از انتقال املاح معدنی جلوگیری شده و علائم کمبود عناصر غذایی ظاهر می‌گردد .
  • تشکیل برآمدگی در محل پیوند که به دلیل اختلاف در رشد پایه و پیوندک است .
  • پاکوتاهی و ضعف کلی درخت که باعث کوتاه شدن عمر درخت می‌گردد
  • عارضه خط سیاه که در پیوند گردوی ایرانی روی گردوی سیاه حتی پس از ۲۰ سال قابل‌مشاهده است .

عوامل محیطی مؤثر در جوش خوردن پیوند

  • دما: بعد از انجام عمل پیوند گرما و یا سرمای شدید باعث عدم موفقیت در پیوند می‌شود.
  • رطوبت: بعد از انجام  پیوند به علت ازدست‌رفتن رطوبت، محل پیوند خشک‌شده و پیوند نمی‌گیرد؛ بنابراین برای جلوگیری ازدست‌رفتن رطوبت در محل پیوند باید از چسب پیوند استفاده نمود .

منابع

  1. خوش‌خوی، م؛ روحانی، ا و تفضلی، ع . ۱۳۸۱. اصول باغبانی. انتشارات دانشگاه شیراز
  2. رسول‌زادگان، یوسف . ۱۳۷۹. میوه کاری در مناطق معتدله. انتشارات دانشگاه اصفهان

 

برای دسترسی به محتواهای بیشتر صفحه مارا در اینستا گرام به ادرس www.instagram/aradshimy.co  را دنبال نمایید

جهت مشاهده  تولیدات شرکت دانش بنیان آراد شیمی سبز بنیان (آرامین) به صفحه محصولات مراجعه نمایید

تغذیه درختان میوه

در این مقاله به تغذیه درختان میوه با معرفی عناصر غذایی مورد نیاز گیاه و نحوه جذب انها خواهیم پرداخت در ادامه همراه ما باشید

عناصر غذایی موردنیاز گیاهان

تغذیه بهینه گیاه شرط اصلی بهبود کمی و کیفی محصولات است. در تغذیه گیاه و درخت نه‌تنها باید هر عنصر به‌اندازه کافی در دسترس آن قرار گیرد، بلکه ایجاد تعادل و رعایت تناسب میان همه عناصر غذایی از اهمیت زیادی برخوردار است. عناصر غذایی موردنیاز گیاهان به سه دسته کلی تقسیم می‌شوند.

عناصر غذایی مضر

عناصری هستند که برای رشد و نمو گیاهان زیان‌آور هستند. حتی در برخی موارد غلظت‌هایی کم این عناصر می‌تواند موجب کاهش قابل‌توجهی در عملکرد و رشد گیاه گردد. ازجمله این عناصر می‌توان به سرب، کادمیوم، جیوه و نیکل اشاره کرد

عناصر غذایی مفید

عناصری هستند که در صورت وجود در محیط سبب بهبود رشد گیاه و یا گیاهان خاصی می‌شوند. برای مثال سدیم برای چغندرقند، سیلیس برای برنج و جو و یا کبالت و مولیبدن برای تثبیت بیولوژیکی نیتروژن مفید می‌باشند.

عناصر غذایی لازم یا ضروری

سه معیار برای ضروری بودن وجود دارد که عبارت‌اند از:

  • گیاه بدون آن عنصر قادر به تکمیل چرخه حیات خود نباشد.
  • وظیفه آن عنصر توسط عنصر دیگری قابل انجام و جایگزینی نباشد.
  • عصر مستقیماً در متابولیسم و تغذیه گیاه نقش داشته باشد.

عناصر لازم یا ضروری عبارت‌اند از:

  • عناصر پرمصرف
  • کربن اکسیژن و هیدروژن: ٦٠ تا ٩٠ درصد ماده خشک گیاهی را تشکیل می‌دهند و جز در موارد کمبود
  • آب کمبود آن‌ها دیده نمی‌شود؛ و عمدتاً از طریق آب‌وهوا تأمین می‌شوند.
  • عناصر کودی شامل نیتروژن فسفر و پتاسیم
  • عناصر آهکی شامل کلسیم و منیزیم
  • گوگرد

عناصر غذایی کم‌مصرف

لازم به ذکر است همان‌طور یکه گیاهان بدون عناصر غذایی پرمصرف قادر به ادامه حیات نیستند بدون عناصر کم‌مصرف نیز قادر به ادامه حیات نخواهند بود. تفاوت عمده‌ای که با عناصر پرمصرف دارند به مقدار بسیار کمتر موردنیاز می‌باشند. میزان مصرف آن‌ها برحسب قسمت در میلیون است درحالی‌که میزان مصرف عناصر غذای پرمصرف بر اساس درصد است. این عناصر عبارت‌اند از آهن، روی، مس، بر، منگنز، مولیبدن و کلر می‌باشند.

ارزیابی وضعیت تغذیه درختان میوه

راهه‌ای مختلفی برای تشخیص کمبودها تعیین میزان عناصر غذایی قابل‌استفاده در گیاهان وجود دارد از متداول‌ترین این روش‌ها می‌توان به ١- آزمون خاک ٢ – آنالیزهای بافت برگ درختان ميوه ٣- تشخیص ظاهری عوارض تغذیه‌ای اشاره کرد.

آزمون خاک

شامل سه مرحله نمونه‌برداری صحیح، تجزیه دقیق عناصر و تفسیر صحیح نتایج تجزیه خاک است. آزمون خاک می‌تواند در گیاهان زراعی سبزی و صیفی‌جات یک‌ساله کمک زیادی به تأمین نیازهای غذایی گیاهان نماید. بین آزمون خاک و تجزیه برگ در باغ ارتباط کمی وجود دارد. یعنی آزمون خاک نمی‌تواند راهنمای خوبی برای تعیین وضعیت تغذیه‌ای درختان میوه باشد. آزمون خاک قبل از احداث باغ بهترین وسیله برای مشخص کردن بافت خاک، مقدار آهک خاک و غلظت عناصر کلسیم، منیزیم، پتاسیم و فسفر خاک است. در باغ‌های احداث‌شده آزمون خاک مکمل نتایج تجزیه برگی است و جهت مشخص نمودن ترکیب کودی باید مورداستفاده قرار گیرد. برای نمونه‌برداری صحیح خاک نقاط دارای شرایط و نوع خاک یکسان مرزبندی شده و خاک‌های متفاوت ازنظر بافت خاک، وضعیت زه کشی خاک، مقدار آهک خاک، عمق لایه سخت کفه زیرین به‌صورت جداگانه نمونه‌برداری می‌شود.

تجزیه بافت گیاه برای تشخیص کمبود عناصر غذایی در درختان میوه

تجزیه برگ نشان‌دهنده مقدار عناصری است که توسط درخت جذب‌شده و به قسمت‌های هوایی درخت منتقل‌شده‌اند. تجزیه برگ تصویر نسبتاً کاملی از وضعیت تغذیه‌ای درختان میوه ترسیم می‌کند. نتایج تجزیه برگ تا حدودی وضعیت عناصر غذایی درختان میوه را ترسیم می‌کند. تجزیه برگ برای باغ‌های دایر مفید است ولی برای احداث باغ میوه ابتدا باید خاک را تجزیه کرد.

مهم‌ترین علائم كمبود عناصر غذايي در درختان میوه

  

علائم کمبود

عنصر

غذایی

در صورت کمبود ازت از برگ‌های پیر به برگ‌های جوان منتقل‌شده و علائم کمبود اکثر در برگ‌های پیر مشاهده می‌شود توقف رشد و زردی برگ‌های پایین درخت از علائم کمبود ازت است. نیتروژن
توقف رشد برگ‌ها، کوچک شدن برگ‌ها و ارغوانی شدن برگ‌های پایینی فسفر
رنگ‌پریدگی سوختگی حاشیه برگ‌ها و زرد شدن حاشیه برگ‌های پایینی در درخت انگور سبب خشک شدن نوک خوشه‌های انگور می‌گردد. پتاسیم
توقف رشد و زرد شدن برگ‌های پایینی گوگرد
زرد شدن پهنک‌برگ‌های جوان و سبز باقی ماندن رگبرگ‌های آن، برگ‌های تازه روئیده زردی بیشتری نشان می‌دهند و درنهایت لکه‌های نارنجی بر روی برگ‌های انتهای توسعه می‌یابند. آهن
بارزترین مشخصه کمبود روی ریز شدن برگ‌ها و جارویی شدن برگ‌های جوان در سرشاخه -مای درخت است وجود نقاط زرد کرمی درزمینهٔ سبز تیره برگ‌های میانی کمبود روی سبب غیر هم‌زمان رسیدن میوه‌ای انگور می‌شود. روی
کمبود منگنز شبیه سایر ریزمغذی‌ها در خاک‌های آهکی اتفاق می‌افتد. برگ‌ها زرد کمرنگ می‌شوند و این زردی از حواشی برگ شروع‌شده و به سمت رگ برگ میانی توسعه می باد. منگنز
کمبود بر در درختان میوه سبب کاهش رشد و نمو پرچم‌ها، کاهش مدت گرده‌افشانی، سیاه شدن وسط میوه سیب و بدشکلی میوه می‌شود. بُر
کمبود مس در درختان میوه سبب ایجاد شاخه‌های پر رشد با برگ‌های درشت به رنگ سبز تیره و با لکه‌های زردرنگ می‌شود. در صورت تشدید کمبود تمام شاخه‌های جوان خشکیده می‌شوند. مس
خشکی برگ‌ها مخصوصاً حواشی آن‌ها از علائم عمومی کمبود کلر در درختان میوه است. در مقایسه با کمبود کلر سمت آن گستردگی جهانی دارد. کلر

 

رابطه علائم کمبود عناصر غذایی با تحرک آن‌ها در درخت

محل ظهور علائم کمبود عناصر غذایی در گیاهان به میزان انتقال عناصر غذایی از برگ‌های پیر به قسمت‌های جوان گیاه بستگی دارد. عناصر غذایی مانند نیتروژن، فسفر و پتاسیم به‌راحتی از برگ‌های مسن به قسمت‌های جوان گیاه جابجا می‌شوند. ازاین‌رو علائم کمبود این عناصر ابتدا در برگ‌های پیرتر گیاه دیده می‌شود. در مقابل، عناصر غذایی مانند کلسیم و منگنز تحت هیچ شرایطی از برگ‌های پیر به قسمت‌های جوان منتقل نمی‌شوند. درنتیجه علائم کمبود این عناصر در قسمت‌های جوان گیاه دیده می‌شوند.

 میزان تحرک عناصر غذایی در داخل گیاه (عناصر کم تحرک و عناصر پر تحرک)

میزان تحرک عناصر در گیاهان عنصر
متحرک ازت
متحرک فسفر
متحرک پتاسیم
غیر متحرک کلسیم
نسبتاً غیر متحرک منیزیم
غیر متحرک گوگرد
نسبتاً غیر متحرک آهن
تحرک کم روی
در شرایط کمبود نسبتاً غیر متحرک و در شرایط کفایت متحرک مس
غیر متحرک منگنز
نسبتاً غیر متحرک بُر
تحرک متوسط مولیبدن
متحرک کلر

برای اطلاعات بیشتر در مورد عناصر مورد نیاز گیاه لطفا مقالات زیر را مطالعه فرمایید

منابع

  1. ملکوتی، محمدجعفر و تهراني، محمدمهدی. نقش ریزمغذی‌ها در افزايش عملکرد و بهبود کيفيت محصولات کشاورزی. انتشارات دانشگاه تربيت مدرس. چاپ سوم. 384.
  2. ملکوتی، محمدجعفر و طباطبایی، جلال. مدیریت تغذیه بهینه در باغ‌های میوه کشور. انتشارات سنا. 1380.

برای دسترسی به محتواهای بیشتر صفحه مارا در اینستا گرام به ادرس www.instagram/aradshimy.co  را دنبال نمایید

جهت مشاهده  تولیدات شرکت دانش بنیان آراد شیمی سبز بنیان (آرامین) به صفحه محصولات مراجعه نمایید

کلات آهن

در این مقاله قصد داریم به معرفی انواع کود کلات آهن موجود در بازار بپردازیم و به صورت مختصر به  بررسی معایب و مزایای هر کدام بپردازیم

 

کمبود آهن در گیاهان

کمبود آهن یک عامل محدودکننده رشد گیاهان است. اگرچه این عنصر به میزان زیادی در خاک وجود دارد، اما قابلیت جذب آن توسط گیاهان معمولاً پایین است و بنابراین کمبود آهن یکی از مشکلات رایج در تغذیه گیاهی است.

 

قابلیت جذب آهن برای گیاهان

اگرچه مقدار زیادی از آهن موجود در پوسته زمین به شکل Fe است، اما شکل Fe ازنظر فیزیولوژیکی دارای اهمیت بیش‌تری برای گیاه است. این شکل از آهن معمولاً محلول بوده اما به‌سرعت اکسیدشده و تبدیل به Fe می‌شود. Fe در pH خنثی و pHهای بالا نامحلول بوده و باعث می‌شود تا آهن در خاک‌های قلیایی و خاک‌های آهکی برای گیاه غیرقابل‌جذب باشد. علاوه بر این، در این نوع خاک‌ها آهن به‌راحتی با فسفات‌ها، کربنات‌ها، کلسیم، منیزیم و یون‌های هیدروکسید ترکیب می‌شود و از دسترس گیاه خارج می‌گردد.

معرفی کود های کلات آهن

جذب آهن توسط گیاه

گیاهان آهن را به‌صورت های اکسیدشده آن جذب می‌کنند که شامل آهن فروس یا سه‌ظرفیتی (Fe) و آهن فریک یا همان دو ظرفیتی (Fe) است. جذب آهن توسط گیاهان به روش‌های مختلفی صورت می‌پذیرد که یکی از این روش‌ها، کلاته کردن آهن است. در این روش، گیاه ترکیباتی به نام سیدروفور را از ریشه خود در خاک رها می‌کند که با آهن پیوند داده و حلالیت آن را افزایش می‌دهند. در این مکانیسم ممکن است باکتری‌ها نیز دخیل شوند.

مکانیسم دیگری که گیاهان به کمک آن میزان جذب آهن خود را افزایش می‌دهند، آزادکردن پروتون (+H) در خاک و درنتیجه کاهش pH در محیط اطراف ریشه است که درنهایت منجر به افزایش میزان حلالیت آهن در خاک می‌شود. در اینجاست که انتخاب نوع کود نیتروژنه اهمیت بالایی پیدا می‌کند. شکل آمونیومی نیتروژن باعث افزایش آزاد شدن پروتون از ریشه شده و بنابراین باعث کاهش pH در خاک و افزایش جذب آهن می‌گردد. در مقابل، شکل نیتراتی نیتروژن موجب افزایش آزادسازی یون‌های هیدروکسید شده و با افزایش pH خاک منجر به ایجاد تداخل در جذب آهن می‌گردد.

لازم به ذکر است که ریشه‌های جوان و تارهای کشنده (ریشه‌های مویین) توانایی بیشتری در جذب آهن‌دارند و بنابراین داشتن سیستم ریشه‌ای فعال و سالم از اهمیت بسزایی در تغذیه گیاهی برخوردار است. به طور خلاصه می‌توان این‌گونه بیان کرد هر عاملی که به رشد، توسعه و سلامت ریشه گیاه صدمه بزند در جذب آهن نیز اختلال ایجاد می‌کند.

معرفی کود های کلات اهن

مقابله با کمبود آهن

هنگامی‌که علائم کمبود آهن در گیاه مشاهده می‌شود، می‌توان با اسپری کردن آهن‌بر روی برگ‌های گیاه نسبت به برطرف‌کردن مشکل در کوتاه‌مدت اقدام کرد اما باید به یادداشت که در مورد گیاهان نیز همیشه پیشگیری بهتر از درمان است؛ بنابراین کشاورز باید دلیل بروز این کمبود را تشخیص داده و آن را برطرف کند تا این مشکل دیگر در آینده پیش نیاید.

در اغلب موارد، بروز علائم کمبود آهن به معنای ناکافی بودن مقدار آهن در خاک نیست بلکه ممکن است به دلیل شرایطی باشد که دسترسی گیاه به آهن موجود در خاک را محدود می‌کند. میزان کربنات در خاک، شوری خاک، رطوبت خاک، سرد بودن خاک و میزان سایر عناصر در خاک (به‌عنوان‌مثال فسفر، کلسیم و عناصر کم‌مصرف رقیب) ازجمله این شرایط هستند. بررسی این عوامل و برطرف‌کردن آن‌ها تا حد ممکن، می‌تواند از هدررفت زمان و هزینه برای مصرف کودهای آهن که شاید نیازی به آن‌ها نباشد جلوگیری کند.

کودهای آهن‌دار

کودهای آهن‌دار به دو صورت سولفات آهن و یا شکل‌های کلاته شده ارائه می‌شوند.

سولفات آهن (٤FeSO)

این کود معمولاً دارای ٢٠% آهن است. سولفات آهن کودی ارزان‌قیمت است که هنگامی‌که در خاک‌های نامساعد مصرف شود به‌سرعت غیرفعال می‌گردد. این وضعیت در pHهای بالای ۷ بحرانی‌تر است زیرا آهن موجود در کود به‌سرعت تبدیل به Fe شده و برای گیاه غیرقابل‌جذب می‌شود.

کلات‌های آهن

کلات‌ها ترکیباتی هستند که یون‌های فلزی (در اینجا آهن) را تثبیت کرده و از اکسید شدن آن‌ها جلوگیری می‌کنند.

 

کلات‌های آهن از سه جزء تشکیل‌شده‌اند:

  • یون‌های Fe و+2 Fe 
  • یک کمپلکس همچون EDDHA،DTPA،EDTA، اسیدهای آمینه، اسیدهای هیومیک – فولویک و سیترات
  • سدیم (+Na) و یا آمونیوم (+٤NH)

کلات‌های مختلف می‌توانند یون‌های آهن را در pH مای مختلف باقدرت‌های متفاوتی نگه‌دارند. همچنین حساسیت آن‌ها به جایگزینی یون‌های رقیب با یون آهن نیز متفاوت است. به‌عنوان‌مثال، هنگامی‌که غلظت یون‌های کلسیم یا منیزیم زیاد باشد ممکن است این یون‌ها به‌جای آهن کلات شده بنشینند. البته واکنش اهن +2 Fe با عامل کلات کننده تحت شرایط سختی انجام می شود بنا براین این محصولات در بازار به سختی یافت میشوند و اغلب به رنگ سبز لجنی می باشند.

Fe-EDTA

این کلات آهن در pH کمتر از ۶ باثبات بوده اما در pH بالاتر از ٥/٦ حدود ٥٠% آهن آن برای گیاه غیرقابل‌دسترسی می‌شود؛ بنابراین مشخص است که این کلات در خاک‌های قلیایی غیرقابل‌استفاده است. همچنین این کلات میل ترکیبی زیادی با کلسیم دارد و به همین دلیل توصیه می‌شود تا از مصرف آن در خاک‌ها و یا آب‌هایی که مقدار کلسیم آن‌ها بالا است خودداری گردد. لازم به ذکر است که EDTA یک کلات بسیار پایدار برای عناصر غذایی کم‌مصرف، به‌جز آهن است که می‌تواند pHهای بسیار بالا را نیز تحمل کند.

Fe-DTPA

این کلات ثبات خود را تا pH حدود ۷ حفظ کرده و حساسیت آن به جایگزین شدن کلسیم به‌جای آهن کمتر است.

Fe-EDDHA

این کلات آهن حتی تا pHهای بیشتر از ۱۱ نیز باثبات بوده و به همین دلیل نیز گران‌ترین نوع کلات آهن موجود در بازار است. کلات‌های EDDHA ممکن است به دو صورت اورتو – اورتو و یا اورتو – پارا باشند. هرچه میزان اورتو -اورتو در یک کلات آهن EDDHA بیشتر باشد، آن کود آهن مرغوب‌تر بوده، پایداری کلات آن بیشتر است و به طبع گران‌تر نیز است. شکل‌های زیر آرایش فضایی اورتو – اورتو و اورتو – پارا را نشان می‌دهند.

امینو کلات اهن

این کلات آهن تا pHهای بیشتر از 9 نیز باثبات بوده و به دلیل ساختار طبیعی و شناخته شده توسط گیاه و سایز کوچکتر بهترین نوع این کلاتها می باشد . کلات‌های بر پایه اسید امینه ممکن است به دو فرم اهن دو و یا سه ظرفیتی باشد.و همچنین میتواند با یک و یا چندین نوع اسید امینه کلات شده باشد. هرچه تعداد انواع اسید امینه در ساختار امینو کلات زیاد تر باشد این محصول دارای تعداد بیشتری از انواع کلات های امینو اسید است بنابر این مرغوبیت و کارایی بالاتری از خود نشان میدهد. هرچه تعداد انواع  L اسید امینه یک کلات امینو کلات آهن بیشتر باشد، آن کود آهن مرغوب‌تر بوده، پایداری کلات آن بیشتر است و به طبع گران‌تر نیز است.

نتیجه گیری 

 به دلیل سایز مولکولی کوچکتر (در حدود نانو ) فرم طبیعی و هماهنگ با ساختار سلولی گیاهی ، استفاده  از انواع اسید امینه در ساختار  که هم موجب افزایش جذب آهن و هم مزایای اسید امینه را دارد و عدم تجمع ماده مضر EDTA  داخل سلول و ….  در مقام مقایسه  انواع کلات های اهن میتوان گفت :بهترین و مرغوبترین کلات آهن از نوع امینو کلات می باشد. 

برای دسترسی به محتواهای بیشتر صفحه مارا در اینستا گرام به ادرس www.instagram/aradshimy.co  را دنبال نمایید

منابع

  1. بهداد، ابراهیم. ۱۳۵۸. بیماری‌های درختان میوه در ایران، چاپ نشاط اصفهان.
  2. فیلسوف، فریدون. ۱۳۶۵. بررسی اثر کودهای آهن‌دار بر معالجه زردی ناشی از کمبود آهن برگ درختان به در اصفهان. ششمین کنگره گیاه‌پزشکی ایران دانشگاه صنعتی اصفهان.
  3. صفری، محمد. ۱۳۹۰. مبانی بیوشیمی کشاورزی. انتشارات دانشگاه تهران.

 

آمینو اسید در کشاورزی

آمینو اسید در کشاورزی

چندین دهه است که کشاورزان از آمینو اسیدها به‌صورت محلول‌پاشی و مصرف خاکی استفاده می‌کنند. کشاورزان در کشورهای پیشرفته که با کمبود مواد معدنی ارگانیک و گاها ساختار ضعیف مواد خام و با استفاده بیش‌ازحد از اکوسیستم موجب ضعیف شدن خاک شده اند، به مزایای آنها به‌عنوان تقویت‌کننده‌های ارگانیک و محرک‌های زيستی پی برده‌اند.

آمینواسیدهای ضروری، استاندارد و غیرضروری

تمام پروتئین‌ها تركيبات مولكولی با صدها آمینو اسید مختلف به‌عنوان بلوک‌های سازنده بنيادين می‌باشند. حدود 500 آمینو اسید شناسایی‌شده‌اند اما اغلب دانشمندان اتفاق‌نظر دارند كه ٢٠ (برخی می‌گویند ٢١ يا ٢٣) اسید آمینه استاندارد موردنیاز برای حيات وجود دارد.

در بيوشيمی پروتئين، واژه آمینو اسیدهای ضروری كاملاً رايج است. اين در اشاره به نيازهای بشر است زيرا بدن انسان قادر به توليد آنها نيست و بايد آن‌ها را از رژيم غذايی خود به دست آورد. در مقابل، اغلب گياهان قادر به تركيب و تولید آنچه نياز دارند هستند. بااین‌حال، اين فرایند نياز به انرژی فراوان دارد بنابراين ايده خوبی است كه آن را از آمینو اسیدهای آماده استفاده از طريق تغذيه برگی يا ريشه فراهم كرد.

آمینواسیدهای چپ‌گرد در مقابل راست‌گرد

يكی از مهم‌ترین مفاهيم آمينواسيدها درك تفاوت بين L آمینواسیدها چپ‌گرد و D آمینو اسیدها راست‌گرد است. اين موضوع تا حدودی تخصصی بوده ولی تا حد امکان این موضوع را برای شما در این مقاله بیان خواهیم نمود.

آنچه ما از آن اطلاع داريم اين است كه طبيعت (حيات) تصميم گرفته است تنها از يك نوع آمینو اسید استفاده كند. به‌جز موارد استثناء بسيار نادر، طبيعت تنها از نوع چپ‌گرد يا L آمینو اسید استفاده می‌کند. اين اثر به‌عنوان كايرالی (تصوير آيينه) شناخته‌شده و به تمام آمینو اسیدهای فعال اپتيكی حاوی يك آلفا گروه آمينو برای اسید کربوکسیلیک اطلاق می‌شود.

پيكربندی طبيعی در سری آمینواسیدها، L ناميده می‌شود (آمینو اسیدهای چپ‌گرد). در اينجا “L مخفف”Laevo” (به معنی سمت چپ) است، نه “Left (به معنی چپ). نوع دیگر D آمینو اسیدها هستند كه در آن “D مخفف”Dextro (به معنی سمت راست) است. هر دو آنها دارای ساختار مولكولی دقيقاً مشابه بوده و تصاوير آیینه‌ای دارند. بهترين راه برای فهميدن تفاوت، دستان خودتان است. ممكن است دست‌ها مشابه باشند – استخوان‌ها، رگ‌ها، انگشتان – اما نمی‌توانید دستكش دست چپ را در دست راست بپوشيد.

برای استفاده آمینو اسیدها در حيات، اين مولکول‌ها بايد مناسب دریافت‌کننده‌ها باشند. به اين دليل است كه يك ارگانیسم دست چپ نمی‌تواند از آمینو اسید های دست راست استفاده كند. بنابراین، L آمینو اسید ها تنها از فرایندهای ارگانيك طبيعی، ازجمله آبكافت آنزيمی (شكستن پروتئین‌ها به‌وسیله آنزيم)  یا قلیایی و یا اسیدی گرفته می‌شوند. در سنتز های مصنوعی تولیدکننده D  و L آمینو اسید می‌باشند كه ممكن است در كاربردهای ديگر سودمند باشند، ولی برای حيات خیر.

آبكافت آنزيمی فرایندی است كه در آن آنزیم‌ها و مواد ارگانيك با آب و گرما در كنار يكديگر قرار می‌گیرند. مواد ارگانيك، با آبكافت تجزیه‌شده و به عناصر بنيادين تبديل می‌شوند (L آمینو اسیدها)؛ مانند هضم کربوهیدرات‌ها، چربی و پروتئین‌ها در انسان. اين فرایند هزينه بالايی داشته و نيازمند تجهيزات خاصی است اما تضمین‌کننده L آمینواسیدهای دوستدار حيات و خالص است.

L آمینو اسیدها و کاربرد آن‌ها

در محيط خاكی طبيعی با اكوسيستم سالم و شكوفا، گياهان آمینواسیدها را از تجزيه مواد ارگانيك به دست می‌آورند. گياه در زمان نياز آنچه لازم دارد را توليد می‌کند. متأسفانه، كشاورزی مدرن حيات خاك سالم را تضعيف و نابود كرده و سطح تشكيل طبيعی آمینو اسیدها را كاهش داده است. بنابراين، گياهان نياز به افزايش انرژی در توليد آمینو اسید دارند كه از صرف انرژی در كاربردهای سودبخش‌تر (افزایش کیفیت و کمیت محصول )جلوگيری می‌کند.

پيش از اينكه آمینو اسیدها بتوانند كاربرد ضروری در گياهان داشته باشند، بايد ازنظر زيستی در دسترس باشند. تنها اعمال آنها در گياه كافی نيست. آمینو اسیدها برای جذب از طريق ريشه يا بافت بايد يا عاری از پپتيدهای مولكولی (دی پپتيد، تری پپتيد) بوده يا تعداد كمی از آن را داشته باشند. آمینو اسیدهایی كه در زنجیره‌های بلند تركيب می‌شوند مولکول‌های بسيار بزرگ بوده و قادر به نفوذ در بافت گياه نيستند. به‌صورت تئوری، مولکول‌های كوچك دارای وزن مولكولی كمتر از ٩٠٠ دالتون هستند كه اجازه پراكندگی سريع در تمام غشاها و رسيدن به محل‌های درون‌سلولی رادارند.

 كاربردهای آمینو اسیدها در متابوليسم گياهان تقريباً نامتناهی است و علم به طور متناوب در حال كشف متابوليسم بيشتر است.

عملکرد آمینواسیدها در گیاه

  • افزايش توليد كلروفیل
  • ارائه منبع غنی از نيتروژن ارگانيك.
  • تحريك توليد ویتامین‌ها
  • تأثیر بر سیستم‌های آنزيمی مختلف
  • تحريك گل‌دهی
  • حمايت از محيط ميوه
  • افزايش محتوی مغذی، اندازه، طعم و رنگ میوه‌ها
  • افزايش كيفيت محصول
  • افزايش مقاومت در برابر پاتوژن‌ها و آفت‌ها
  • حمايت از گياه در برابر فشارها و استرس‌های زنده (آفات و ویروس‌ها) و غیرزنده (سرمازدگی, کم‌آبی, سموم و غيره).

سنتز پروتئین

آمینو اسیدها ساختار بنيادين پروتئین‌ها می‌باشند. آمینواسیدهای استاندارد به‌صورت نامتناهی تركيب می‌شوند تا پروتئین‌های بی‌شماری توليد نمايند. اين پروتئین‌ها برای بسياری از عناصر ساختاری بافت گياه ضروری هستند.

پروتئین‌ها كاربردهای فراوانی دارند: ساختاری (حمايتی)، متابوليك (آنزیم‌ها و تحريك)، انتقال ریزمغذی‌ها، حفظ آمینو اسید. درواقع، پروتئین‌ها تقريباً با تمام فرایندهای زيستی سازگارند. گياهان، برخلاف انسان‌ها، پروتئین‌های خود را بر اساس مرحله خاص رشد، نيازهای تغذيه، فشار و غيره توليد می‌نمایند. بااین‌وجود، دو موضوع اهميت فوق‌العاده‌ای دارند:

  • گياهان تنها در صورتی قادر به ايجاد پروتئین‌های موردنیاز هستند كه مواد خام وجود داشته باشد.
  • توليد آمینواسیدها يك فرایند بسيار انرژی بر است.

بنابراين، تولید L آمینو اسیدهای اضافی در ریشه‌ ها يا بافت برگ ها، گياه مواد فراوانی  ذخیره کرده و برای ايجاد پروتئین‌های مهم انرژی ذخيره می‌کند.

نقش آمینو اسیدها در مقاومت گیاهان برابر استرس‌های غیرزیستی

استرس غیرزیستی، ازجمله دمای بالا/پايين، خشكی، حملات آفت‌ها، بيماری، يا فيتوتاكسيك در اثر استفاده از آفت‌کش‌های شيميايی آثار منفی بر متابوليسم گياه دارند. به طور حتم اين امر موجب كاهش كيفيت و ميزان محصول می‌شود. استفاده از کود آمینو اسید قبل  یا زمان و پس از شرايط استرس‌زا به گياهان موادی می‌دهد كه به طور مستقيم پیشگیری‌کننده بوده و اثر بازسازی دارد.

زمانی كه گياه تحت استرس است، خود توليدی آمینو اسیدها كاهش می‌یابد زيرا این یک پروسه انرژی بر است. در عوض، گياه پروتئین‌های موجود را آبكافت (شكستن) می‌کند  تا به آمینو اسیدهای موردنیاز دست يابد. اين فرایند انرژی كمتری نسبت به توليد آمينو اسيدها نياز دارد. همچنين اين بدين معنی است كه گياه ممكن است خود را “خود خواری” كند، مگر اينكه آمینو اسید هایی از طريق مكمل فراهم گردند.

نقش آمینواسیدها در فتوسنتز گیاه

فتوسنتز مهم‌ترین فرایند بيوشيمی گياه است. يك گياه به توليد قند از دی‌اکسیدکربن، آب، و انرژی نور می‌پردازد. پس از آن قندهای جمع‌آوری‌شده (کربوهیدرات‌ها) توسط گياه به‌عنوان منبع انرژی فرایندهای متابوليك ديگر استفاده می‌شوند. آمینواسیدها تأثیر فراوانی در اين عملكرد متابوليكی مهم دارند.

L- گليسين و L- گلوتاميك متابولیت‌های ضروری برای توليد كلروفيل و تشكيل بافت هستند. اين آمینو اسیدها موجب افزايش غلظت كلروفيل در گياهان می‌شوند. كلروفيل بيشتر,  به معنی افزایش جذب انرژی است كه موجب افزايش فتوسنتز خواهد شد.

نقش آمینو اسیدها در گرده‌افشانی و تولید میوه

گرده‌افشانی و توليد ميوه دو تا از مهم‌ترین مراحل گياهان هستند. آمینو اسیدها در زمان اوج فعالیت‌های متابوليكی حائز اهميت هستند:

  • L- هيستيدین به رسيدن ميوه كمك می‌کند.
  • L- پرولين موجب افزايش فعاليت گرده‌افشانی می‌شود
  • L- ليسين، L- متيونين و L- گلوتاميك اسيد موجب افزايش توليد گرده و طول لوله آن می‌شود.
  • L- الانين، L- والين و L- لوسين موجب افزايش كيفيت ميوه می‌شوند.

نقش آمینو اسیدها در  فعالیت باکتری ها و رشد گیاه

ازآنجا که تمام حيات بستگی به آمینو اسیدها دارد، اين شامل تمام باکتری های موجود در حول ناحيه ریشه می‌شود. باکتری ها تا جایی که می‌توانند از آنها استفاده می‌کنند. برخی از آنها به‌عنوان بلوک‌های سازنده برای عناصر سازنده و توليد پروتئين شركت می‌کنند. برخی ديگر به‌عنوان محرك توليد عناصر رشد و هورمون مختلف استفاده می‌شوند. برای مثال، L- متيونين يك ماده تشکیل‌دهنده عوامل رشد است كه غشاهای سلول در باکتری را تثبيت می‌کند. همچنين برخی از باکتری ها آمینوها را به‌عنوان منبع پروتئين و نيتروژن مصرف می‌نمایند.  به‌علاوه، آمینو اسیدها در خاك يك منبع غنی مواد ارگانيك برای كمك به ايجاد سازه، حاصلخيزی و حفظ آن را فراهم می‌کنند.

آمینو اسیدها به‌عنوان منبع ثابت نیتروژن ارگانیك

رایج‌ترین اشكال شناخته‌شده نيتروژن مورداستفاده توسط گياهان نیترات‌ها (NO٣) و آمونيوم +(NH٤)هستند. فراهم‌کردن نيتروژن به‌عنوان تغذيه دشوار است، زيرا يك گاز طبيعی است و به‌آسانی از خاك آزاد می‌شود. بيشتر كودهای تجاری حاوی اين دو شكل باکیفیت بالا هستند. گياهان از هر دو شكل استفاده نمی‌نمایند، هرچند گياهان مختلف موارد ترجيحی متفاوتی دارند.  بااین‌وجود، يك منبع ديگر نيتروژن وجود دارد. اين منبع كمتر موردبحث قرار می‌گیرد اما همچنان يكی از فاكتورهای مدنظر در كشاورزی بيولوژيكی و ارگانيك در اروپا است.  مواد ارگانيك مانند آمینو اسیدها حاوی نيتروژن هستند. زمانی كه گياه آمینواسید خود را تخليه می‌کند از نيتروژن ارگانيك استفاده می‌نماید.

ازآنجاکه بخشی از نيتروژن در گياه برای توليد پروتئين و آمینو اسید استفاده می‌شود، با فراهم نمودن شكل آماده، گياه نياز كمتری به نيترات و آمونيوم برای اين فعالیت‌ها دارد.

چرا اين موضوع حائز اهميت است؟ مانند هر چيز ديگری، استفاده بیش از حد از يك جنبه موجب بروز مشكلاتی در جای ديگر می‌شود. نیترات‌های فراوان به طور ويژه تمايل به ايجاد رشد سريع و كشيدگی سلول دارند؛ مانند شكل سريع سلول‌های درحال‌رشد، ديواره سلول كشيده و نازك می‌شود. اين بافت نازک‌ يك هدف عالی برای آفت‌های حمله‌کننده است. اين پديده را می‌توان با محصولات زمينی زيادی مانند ذرت مشاهده كرد . نيترات فراوان نيز موجب ناسازگاری در برابر ديگر مواد معدنی مهم مانند كلسيم، منیزيم و پتاسيم می‌شود.

زمانی كه نیترات‌ها در حالت متعادل باشند، فراهم نمودن نيتروژن ارگانيك می‌تواند موجب رشد سلول‌ها با شكل طبيعی و محكم شود. اين امر موجب ايجاد يك گياه قوی‌تر با سلول‌های سالم با مقاومت بيشتر در برابر استرس و حملات می‌شود.

در زمان صحبت‌کردن از سلول‌های گياهی و آمینو اسیدها، نمی‌خواهیم حمايت از آنها را برای تنظيم تعادل تراوشی فراموش كنيم. روزنه‌های هوايی ساختارهای سلولی هستند كه تعادل آب گياه را كنترل می‌نمایند. همچنين آن‌ها در طول تعرق (“تنفس” از برگ‌ها) و همچنين جذب ریزودرشت مغذی‌ها استفاده می‌شوند. بازگشت‌های روزنه هوايی با عوامل خارجی (نور، رطوبت، دما، و غلظت نمك) و داخلی (آمینواسیدها، پتاسيم در دسترس و غيره) كنترل می‌شوند. روزنه‌های هوايی در زمان نور و رطوبت كم بسته می‌شوند؛ همچنين اين اتفاق در زمان دما و غلظت نمك زياد نيز رخ می‌دهد. بسته‌شدن آن موجب كاهش فتوسنتز و تعريق و افزايش تنفس می‌شود. اين امر موجب كاهش تعادل متابوليك و کم‌شدن سرعت رشد می‌شود. گلوتاميك اسيد به‌عنوان يك عامل تراوشی برای سلول‌های حفاظتی عمل می‌کند كه می‌تواند بازشدن روزنه را افزايش دهد.

شما می توانید تاثیر اسید آمینه را بر روی گیاه گندم را در صفحه اینستاگرام شرکت مشاهده کنید.

آمینو اسیدها به‌عنوان عامل کلاته کننده

يكی از قابل‌توجه‌ترین نقش‌های آمینو اسید ها افزايش تنوع زيستی مغذی‌ها است. گياهان به دليل ساختار مولكولی و شارژ يونی، برخی از مغذی‌ها را جذب نمی‌کنند.  آمينو اسيدها (و برخی ديگر از اسيدهای ارگانيك) اين مواد معدنی غیرقابل‌دسترس را قابل‌جذب و انتقال در بافت‌های گياه می‌کنند.

با كلات با آمینو اسیدها، مقدار كلی مواد معدنی  محلول قابل جذب موجود در محلول مغذی افزایش یافته و به واسطه امینو اسید جذب و انتقال از طریق گیاه افزایش می یابد. به‌علاوه، آمینواسیدها اجازه تغذيه برگی سودبخش با انتقال مواد معدنی توسط روزنه‌های هوايی را می‌دهند.

اسيدهای L- گليسين، L- گلوتاميك و L- آسپارتيك به‌عنوان عوامل كلات كننده بسيار سودمند شناخته می‌شوند كه دليل عمده آن وزن مولكولی كوچك آن‌ها است. وزن آن‌ها اجازه حركت سريع در غشاهای سلول را می‌دهد. علاوه بر افزایش دسترسی مواد مغذی خوب، آمینواسیدها برای كاهش سميت فلز در گياهان و خاك با پيوند با فلزهای سنگين شناخته می‌شوند. اين امر به ايجاد تعادل سطوح عناصر گوناگون در واسطه كمك می‌کند.

برای دسترسی به محتواهای بیشتر صفحه مارا در اینستا گرام به ادرس www.instagram/aradshimy.co  را دنبال نمایید

منابع

  1. دکتر صفری، محمد. مبانی بیوشیمی کشاورزی. ۱۳۹۰. انتشارات دانشگاه تهران
  2. دکتر مرادی پینوندی، کامران. کاربرد تنظیم‌کننده‌های رشد گیاهی درکشت بافت.1398. انتشارات جهاد دانشگاهی استان اردبیل

 

نقش تعرق در جذب آب از ریشه

 

در این مقاله به مبحث تعرق گیاهان و عوامل دخیل در آنها می پردازیم ، تعرق در گیاهان چیست ؟، اندازه گیری تعرق در گیاهان ، عوامل موثر در تعرق و تبخیر و تعرق در گیاهان

 

 تعرق چیست ؟

خروج آب از قسمت‌های هوایی گیاه به‌ صورت بخار آب تعرق نامیده می‌شود.

انواع تعرق در گیاهان

تعرق روزنه‌ای: برگ اندام اصلی و عمده تعرق است و قسمت اعظم تعرق از میان روزنه‌های آن انجام می‌شود.

تعرق کوتیکولی: مقدار کمی بخار آب از برگ‌ها و ساقه‌ها به‌وسیله تبخیر مستقیم از طریق یاخته‌های اپیدرمی و از میان کوتیکول خیلی نازک آنها خارج می‌شود.

تعرق عدسکی: خروج بخار آب می‌تواند از طریق عدسک‌های ساقه‌های چوبی یا عدسک‌های میوه انجام شود

هرچقدر تعرق بالاتر باشد به همان اندازه هم شدت جذب آب نیز بالاتر است. زمانی که تعرق صورت می‌گیرد، پتانسیل آب ریشه منفی‌تر از خاک است و پتانسیل برگ منفی‌تر از ریشه و پتانسیل جو منفی‌تر از برگ است.

بنابراین جریان آبی از خاک به‌طرف اتمسفر، از طریق گیاه برقرار می‌شود که باعث انتقال مواد محلول موردنیاز گیاه همراه با صعود آب می‌شود. هرگاه پتانسیل آب جو افزایش یابد و جو از آب اشباع شود، جذب آب توسط سیستم ریشه‌ای و انتقال شیره خام در آوندهای چوبی به حداقل رسیده و یا متوقف می‌شود؛ بنابراین می‌توان گفت تعرق باعث ایجاد یک فشار منفی می‌شود که می‌تواند صعود شیره خام را حتی تا ارتفاع بیش از ۱۰۰ متر در درخت غول موجب شود.

اندامک‌های تمام یاخته‌های زنده برگ، پروتوپلاسم و دیواره یاخته پرازآب بوده و از آب اشباع‌شده است آب از راه آوندهای چوبی رگبرگ‌ها به برگ می‌رسد. تعرق روزنه‌ای از طریق تبخیر سطحی دیواره‌های یاخته‌ای که در محدوده فضاهای بین یاخته‌ای قرار دارند و همچنین از بخار آبی که از فضاهای بین یاخته‌ای از طریق روزنه وارد می‌شود، انجام می‌گردد.

نقش تعرق در گیاه:

  1. کمک به صعود شیره خام به‌وسیله‌ی ایجاد نیروی مکش
  2. مؤثر بر فشار انتشار و کمک به پدیده انتشار در یاخته‌ها
  3. مؤثر بر جذب آب و مواد کانی توسط ریشه‌ها
  4. کمک به تبخیر آب اضافی
  5. انتقال مواد غذایی از یک قسمت به قسمت دیگر گیاه
  6. کنترل دما
  7. مؤثر بر باز و بسته‌شدن روزنه‌ها
  8. تأثیر غیرمستقیم بر فتوسنتز و تنفس
  9. پراکندگی انرژی اضافی دریافت شده از خورشید

عوامل مؤثر بر تعرق:

  1. رطوبت نسبی: هرقدر رطوبت نسبی جو بیشتر باشد، میزان تعرق کمتر خواهد بود.
  2. دما: دما علاوه براثری که روی رطوبت نسبی دارد در شرایط طبیعی افزایش دما تا 30- ۲۵ درجه سانتی‌گراد باعث افزایش شدت تعرق شده و از این درجه به بعد باعث کاهش تعرق می‌شود.
  3. باد و جریان هوا: باد باعث تجدید هوا در مجاورت بافت‌ها شده و شدت تعرق را افزایش می‌دهد ولی شدید بودن آن باعث بسته‌شدن روزنه‌ها و کاهش تعرق می‌شود.
  4. روشنایی: در بسیاری از گیاهان شدت تعرق در تاریکی تقریباً صفر است و روشنایی باعث افزایش شدت تعرق می‌شود.
  5. عوامل ساختاری:
    • سطح اندام هوایی
    • آرایش بافت‌های برگ
    • تعداد و وضع روزنه‌ها
  6. مواد شیمیایی بازدارنده تعرق: موادی مانند موم‌های پلی‌وینیل و الکل‌های سنگین که بتوانند از راه تأثیر بر یاخته‌های روزنه‌ای موجب بسته‌شدن روزنه‌ها شوند و یا مستقیماً روزنه‌ها را مسدود کنند، مواد بازدارنده تعرق نام دارند.

روش‌های اندازه‌گیری تعرق:

  1. روش وزن کردن: در این روش ازدست‌دادن آب ، با توزین تمام گیاه و یا شاخه‌ای از آن اندازه‌گیری می‌شود.
  2. جمع‌کردن و توزین بخار آب حاصل از تعرق: با این روش می‌توان میزان تعرق به مقدار کم را در گیاهانی که در هوای بسته و هوای آزاد رشد می‌کنند، اندازه گرفت.
  3. روش لیزیمتری: این روش برای اندازه‌گیری مقدار تعرق یک پوشش گیاهی بکار می‌رود.
  4. روش حجم‌سنجی یا پوتومتری (آشام سنجی): روش آشام سنجی برای مطالعه تأثیر عوامل محیطی مثل دما، نور، هوا و غیره بر روی تعرق روش مناسبی است .

روش کلرید کبالت: اساس این روش استفاده از کاغذ آغشته به کلرید کبالت ( co cl2 ) است. این کاغذ اگر خشک باشد، آبی‌رنگ است و وقتی مرطوب گردد، صورتی‌رنگ می‌شود. هنگام آزمایش، رنگ کاغذ ابتدا آبی است و به‌تدریج صورتی‌رنگ می‌شود و میزان تغییر رنگ آن معیاری برای اندازه‌گیری تعرق است.

 

 

 

نتیجه‌گیری

تعرق در سه عمل مهم نقش دارد: ۱(گردش آب در گیاه ۲) تغذیه ترکیبات معدنی به‌وسیله شیره خام ۳) تقلیل گرما

البته این اعمال بدون انجام تعرق نیز صورت‌پذیر هستند ولی تحت‌تأثیر این پدیده تشدید می‌شوند. به عقیده بعضی از محققان، رشد و نمو در گیاهان بدون انجام تعرق امکان‌پذیر نیست، درصورتی‌که ممکن است این امر از پایین آمدن شدت فتوسنتز که نسبت به بسیاری از عوامل مؤثر بر تعرق حساس است مانند روشنایی، بازبودن روزنه‌ها و دمای متوسط ناشی شده باشد. علاوه بر این باید توجه داشته باشیم که آب یکی از مواد ضروری برای رشد و تولید محصول در گیاهان است و یکی از راه‌های مؤثر برای جلوگیری از کمبود آب جلوگیری از انجام تعرق بیش از اندازه است.

منابع مورداستفاده

1.ابراهیم‌زاده، حسن. ۱۳۹۰. فیزیولوژی گیاهی مبحث تغذیه و جذب. مؤسسه انتشارات دانشگاه تهران

2.Hirth L. et Stolkowski J, 1966. Biologie cellulaire. Presse univestiy de France, paris,408 P.

3.Luttge U. and N. Higinbotham, 1979. Transport in plants. Springer – Verlagy, 468 P.

 

مطالب بیشتر در پیج اینستاگرام شرکت

https://instagram.com/aradshimy.co

04533515876
خروج از نسخه موبایل